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Abstract—Intrinsic magnetic and dielectric properties of 
magneto-dielectric composites are typically determined at 
microwave frequencies with both transmission and 
reflection data. An iterative method, such as root-finding, is 
often used to extract the properties in a frequency-by-
frequency basis. In some situations, materials may be 
manufactured on a metal substrate that prevents 
transmission data from being obtained. This happens when 
the materials are too fragile or too strongly bonded to the 
substrate for removal and must be characterized with the 
metal substrate in place. This paper compares two different 
free-space extraction algorithms, developed for the 
simultaneous extraction of complex permittivity and 
permeability from metal-backed reflection. One of the 
algorithms relies on reflection measurements of the same 
material with two known thicknesses. The second method 
takes advantage of wide bandwidth measurements to fit the 
reflection to analytical models (e.g. Debye). The accuracy of 
these methods are evaluated and the stability criteria for the 
techniques will be discussed, as well as the tolerance of the 
techniques to various measurement errors. 
  

I. INTRODUCTION 
Dielectric permittivity and magnetic permeability are 

complex values, and four measured parameters (or two complex 
ones) are needed to fully determine an isotropic material’s 
electromagnetic properties. One method to determine these 
properties is through the measurement of network scattering 
parameters from a slab of material. These can be collected 
through waveguide-based or free-space measurements of 
complex reflection and transmission for each frequency. An 
inversion algorithm then relates these measured scattering 
parameters to the desired intrinsic properties.  

For some materials, transmission and reflection may not be 
available or may be inconvenient to collect. This paper considers 
the case of materials that are backed by a metal surface, such as 
a coating applied onto a metal plate, which is not easily removed 
from the metal substrate after application. In such cases, the 
collection of transmission values is not possible due to the metal 
backing, and all materials parameters must be determined 
through the reflection parameters. In the special case of materials 
with already known permeability (e.g. dielectrics with an 
assumed μ ~ 1), analytic solutions exist to obtain values for the 
materials permittivity. In cases with unknown values for both 

permittivity (e) and permeability (μ), however, no solution 
exists to obtain these parameters from a single measurement. 

In this paper, we explore two strategies to obtain both 
permittivity and permeability from metal-backed magneto-
dielectric materials. The first method acquires two separate 
measurements from samples of the same material with different 
thickness. In this case, we solve an analytic equation to extract 
the material properties. In our second method, we apply a 
dispersion model to the material, and extract the properties of the 
material from the fitting parameters. The advantage of this 
second case is that material parameters are determined from a 
single measurement. Both methods have shortcomings, which 
are analyzed in this paper. 

 

II. EXPERIMENTAL DETAILS 
The algorithms developed in this paper were tested with a 

tabletop free-space measurement system shown in Figure 1. This 
system uses two spot probes connected to a two-port network 
analyzer. The probe performance was previously documented to 
have accuracy similar to a larger laboratory focused beam 
system [1]. A commercial magneto-dielectric absorber was used 
to test the developed algorithms. It is a carbonyl iron filled 
elastomer obtained from Arc Technologies, specifically their 
11802 magnetic material. The thicknesses of these specimens 
were measured as 75 mils (1.9 mm) 

 

  
Figure 1 Photo of tabletop free space measurement. 



III. TWO-THICKNESS INVERSION 
The two-thickness inversion model is derived starting with 

the equation for reflection from a metal-backed sample: 

 𝑆"" = 	
%&'()(+,-.√%0)2√%0
%&'()(+,-.√%0)3√%0

     (1) 

 
Here, the free-space wavevector and sample thickness are 
represented as k0 and t, respectively. After some rearrangement, 
and noting that sqrt(µe) is the refractive index, n, of the material 
and that sqrt(µ/e) is the impedance, Zm of the material, we obtain 
the apparent normalized impedance of the material: 

 "2455
"3455

= 𝑍 = 	𝑍7𝑡𝑎𝑛ℎ(𝑖𝑡𝑘>𝑛)      (2) 

Since the material’s impedance does not vary with thickness, 
we rearrange the above equation to solve for Zm, and then set 
these equations equal to each other. (Note that the subscripts 1 
and 2 are used to distinguish between the two samples) 
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This equation is solved for refractive index with a numerical 
root finder (e.g. Newton’s Method), allowing for an explicit 
solution to equation 2, which provides permittivity and 
permeability values. One key advantage of this method is that 
materials properties theoretically can be obtained for any 
frequency without prior knowledge of the material under study. 

To test the algorithm, we obtained permittivity and 
permeability data for a magnetic absorber sample using a more 
conventional S11/S21 inversion method [2]. With these material 
parameters, we used equation 1 to generate simulated reflection 
(S11) expected for metal backed samples of this same magnetic 
material for two different thicknesses. The fitted metal-backed 
S11 data for two different thicknesses (1 mm and 3 mm) were 
then used to test the two-thickness inversion. Figure 2 plots the 
results of this second inversion, showing that the fitted 
permittivity and permeability match almost exactly with the 
measured values. This case shows that the algorithm can handle 
real material parameters. However, the reflection produced from 
these simulated materials is idealized and does not necessarily 
capture the uncertainty introduced in actual measurements. 

To obtain directly measured data, two magnetic absorber 
sheets were measured first separately (1.9 mm), and then stacked 
on top of each other to create a thicker specimen (3.8 mm). Care 
was taken to minimize air gaps between the two sheet 
specimens. The experimentally measured sheets consisted of a 
carbonyl iron powder mixed into an elastomer via mechanical 
milling. As is typical for this manufacturing method, the 
magnetic absorber had a small anisotropy – the permittivity and 
permeability in one direction was different versus the other. 
Thus, the orientation of each sheet was chosen to ensure that the 
material properties along the polarization direction of the 

measurement fixture were most consistent between the two 
measurements.  

 
Figure 2 Two-thickness algorithm fit to simulated metal-
backed S11 data of a commercial magnetic absorber 
compared to conventional free-film inverted properties. 
 

Applying the two-thickness inversion algorithm to the data 
yielded the results in Figure 3. Both the two-thickness inverted 
data (thin lines) and conventional free-film (transmission and 
reflection) inverted data (thick lines) are shown in these plots. 
Overall, the agreement of the two-thickness data is close to the 
results obtained with transmission/reflection-based inversion. 
Some of the differences can be explained by accuracy 
limitations, particularly the poor fit to permittivity near the lower 
end of the frequency band. The accuracy of the two-thickness 
method at low frequencies for dielectric properties is limited by 
the weak tangential electric field that exists near a metal 
boundary, i.e. for a metal-backed specimen. Another possible 
source of error lies within the material itself. Since the two-
thickness method requires two separate measurements of 
different specimens, differences with the materials properties 
between the two specimens will increase measurement 
uncertainty. 
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Figure 3 Two-thickness algorithm fit to directly measured 
metal-backed S11 data from two different thicknesses of a 
commercial magnetic absorber compared to conventional 
free-film measurement. 

 
 

A limitation to the two-thickness inversion method is that 
equation 3 has multiple solutions due to the periodic nature of 
the phase shift in the material. Practically, this requires a 
reasonable initial guess for the material properties to converge 
onto the correct solution, as with many other material inversion 
algorithms. Figure 4 shows the solution space of the two-
thickness inversion for the measured data above. The top plot 
shows the two-layer model fit ‘goodness’ at 3 GHz, while the 
bottom plot shows the same model fit ‘goodness’, but at 17 GHz. 
This goodness was calculated as the difference between 
measured data and the two-thickness model equation for each 
combination of real and imaginary index  (n = sqrt(µe)). As 
shown in these plots, the number of solutions increases with 
increasing source frequency (and electrical thickness) so a useful 
method to ensure the correct solution is to solve for low 
frequency data first and use these obtained values to inform 
guesses for higher frequency data.  

The two-thickness inversion method implicitly assumes that 
the materials under study are identical materials with the sole 
exception of a difference in thickness. In practice, it may not 
always be possible to ensure that the two specimens have 
identical properties (e.g. due to variations in manufacturing). 
Since, strictly speaking, there will always be some nonzero 
differences in properties, it is important to understand how this 

inversion method will respond to such uncertainty. To take an 
extreme case, we simulated a material so that the permittivity 
doubled between layers. The results are shown in Figure 5. The 
fitting of the real part of n shows a transition in the middle of the 
frequency band from a higher value to a lower value. These 
values correspond to the two indices of the thicker and thinner 
samples. The imaginary part shows an anomalous peak above 2, 
whereas both materials individually have imaginary index below 
0.5 at all frequencies. This error is not simply a numerical error 
within the algorithm, as the fitted value corresponds to the 
‘correct’ best solution within the solution space of equation 3. 
This demonstrates that the material properties between the two 
measured samples should match as closely as possible to ensure 
meaningful results. 

 

   
Figure 4 The two-thickness model ‘goodness’ of fit at low 
frequency (top) and high frequency (bottom). Multiple 
maxima (light blue to red areas) are evident in the higher 
frequency solution space. 
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Figure 5 An example of the anomalous dispersion calculated 
by the two-thickness inversion when the two thickness 
specimens have significantly different properties. 

 
 

IV. DEBYE MODEL INVERSION 
While the two-thickness method is effective for determining 

intrinsic properties of metal-backed magneto-dielectric 
materials, it has the disadvantage of requiring two different 
material samples. A more desirable situation is where the 
complex permittivity and permeability can be obtained from a 
single sample of metal-backed material. However, solving for 
four unknown parameters (real and imaginary permittivity and 
permeability) based on two measured values (reflection 
amplitude and phase) is obviously not practical for frequency-
by-frequency inversion. Instead, the model-based approach to 
metal-backed inversions uses the broadband nature of free-space 
measurements to fit assumed model parameters to the observed 
S11 data. In other words, rather than trying to fit four intrinsic 
parameters at each frequency, the model-based algorithm fits a 
six or so model parameters across all the frequencies in the 
measured bandwidth. In this method and to keep the method 
practical, we employ Debye models [3] for both the permittivity 
and the permeability of the material. 

 𝜀 = 𝜀+AE +	
0G20HIJ
"3+ ⍵⍵L

 (4) 

 𝜇 = 𝜇+AE +	
%G2%HIJ
"3+ ⍵⍵N

	 (5) 

This Debye formulation has three fitted model parameters 
for permittivity and another three for permeability leading to six 
fitting parameters (e0,e¥,µ0,µ¥,we,wµ) and a dependence on 
wavenumber (w). This formulation is approximate, and it is 
certainly possible to use more complex functions (such as 
Lorentz). However, adding more parameters will increase 
computation time and complexity and it is not clear that there is 
a benefit in accuracy to using a more complicated dispersion 
model. That said, it is not uncommon for some materials to have 
a characteristic conductivity in the dielectric properties. In that 
case a conductivity term may be added to the permittivity model 
to account for that conductive material behavior. For the 
magnetic absorber examples shown in this paper however, an 
additional conductivity term is not required. 

Figure 6 shows an example of an ideal material with 
permittivity described by a Debye model. Over a wide frequency 
band, a Debye material’s real permittivity transitions from the 
low frequency limit to the high frequency limit. During this 
transition, the imaginary part of the permittivity reaches a peak. 
For practical materials measurements, this transition will 
typically not span more than a decade of frequencies, leading to 
variable effects depending on where in the Debye relaxation the 
measurement band takes place. In the high or low frequency 
limits, the Debye material is a non-dispersive, low-loss material, 
whereas the dispersion and loss become significant near the 
relaxation frequency.  

 

 
Figure 6 Ideal material described by the Debye dispersion; 
versus logarithm of frequency (top) and linear frequency in 
the 2-18 GHz band (bottom) 

 
As shown in Error! Reference source not found., a change 

in the Debye parameters will cause a resulting change in the 
reflection of the material.  Typically, a large number of 
frequency points is collected while the number of fitting 
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parameters is 6. After obtaining the fitting parameters, the 
material values are easily obtained with the above equations. 
One obvious deficiency of this method is that the model fit is not 
guaranteed to converge onto a solution if the underlying material 
properties are not well described by a simple Debye model. 
Similar to the two-thickness method, this method also requires a 
reasonable initial guess for convergence of the model, even for 
materials that are perfectly described by the Debye model.  

           
Figure 7 Magnitude (top) and phase (bottom) for different 
combinations of Debye model parameters 

 
 

To determine the quality of fit for the Debye model 
inversion, we first obtain the permittivity/permeability data 
using S11/S21 measurements and conventional inversion of a 
magnetic sample. These values are fit to a Debye model to give 
the ‘Ideal’ fit for an equivalent Debye material. Finally, the 
S11/S12 data is converted into impedance using equation 2 and 
fit using the 6 Debye model parameters. The material properties 
are subsequently extracted using equations 4 and 5, and the 
materials parameters obtained from the three methods are 
plotted in  Figure 8. From this, the Debye model inversion shows 
good agreement with S11/S21and idealized Debye fit data. 

The Debye model inversion method was found to more 
accurately fit permeability in thin samples. The reason for this 
becomes clear from analysis of the reflection equation above. In 
the limit for thin specimens, 

𝑙𝑖𝑚
,-.A→>

𝑍 = 𝑙𝑖𝑚
,-.A→>

𝑍7𝑡𝑎𝑛ℎ(𝑖𝑡𝑘>𝑛) = 𝑍7𝑖𝑡𝑘>𝑛 = 𝑖𝑡𝑘>𝜇	 (6)	

This result implies that impedance will have a large dependence 
on permeability at lower thicknesses/frequencies. Conversely, 

the effect of permittivity will be much less, and the fitting for the 
permittivity parameters will be more challenging. This behavior 
is consistent with the requirements of a vanishing tangential E-
field adjacent to a conductive boundary. On the other hand, as 
losses within the material increase, whether from higher intrinsic 
loss or higher frequency/thickness, the impedance of the system 
converges on to the impedance of the material: 

 𝑍7𝑡𝑎𝑛ℎ(𝑖𝑡𝑘>𝑛) = 𝑍7
&'()(R7(A),-.)2+,@A(ST(A),-.)
"2U&'()(R7(A),-.) &'((ST(A),-.)

 (7) 
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"2+ ,@A(𝑅𝑒(𝑛)𝑡𝑘0)

= 𝑍7 (8) 

 

            
Figure 8  Extracted properties from i) conventional 
transmission/reflection inversion (‘measured’), ii) Debye 
model fit to these extracted properties (‘modeled’) and iii) 
model-based inversion from metal-backed S11 of  magram 
samples (‘fit’). 
 

To demonstrate this change in dependence on permeability 
to a dependence in Zm, Figure 9 shows simulated data magnetic 
material at two different thicknesses, generated using eq 2 and 
constant values for (µ = 6 – 0.1i, e = 10 - 0.6i), compared with 
the limit values obtained in equations 6 and 8. At a thickness of 
0.5 mm, the low frequency is highly correlated with the 
permeability, but gradually diverges. In contrast, for a sample 
with thickness of 10 mm, the data can be observed to oscillate 
about the material’s impedance, before gradually converging on 
it.  It should be noted that the impedance still contains a 
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dependence to permeability built in to the materials impedance. 
Thus, there does not exist a clear region that has high 
dependence on solely the permittivity. While thinner samples 
can generate more accurate fitting of the permeability, very thick 
samples do not necessarily lead to improved fitting for 
permittivity. Ideally, the material thickness would be chosen to 
encompass the low and high frequency approximation regions, 
as this forces the fitting algorithm to select values that will 
accurately represent all material properties. 

 

 
Figure 9: Simulated impedance for metal-backed absorber 
with thickness of 0.5 mm (top) and 10 mm (bottom) 

 
 

One of the largest limitations to the Debye fitting model is 
the existence of multiple, degenerate solutions. Ideally, the 
Debye parameters that lead to the closest fit of the reflection 
should also lead to the closest fit of the material parameters. In 
the case of a simulated Debye material, this is indeed true. For 
actual materials however, the Debye model is not a perfect fit 
and there is the possibility of an ‘inferior’ solution that has a 
superior fit to the reflection. Figure 10 shows that this scenario 
can occur in the model fitting, leading to less than optimal 

inversion of the material parameters. While this level of error 
may be acceptable in some applications, generating more precise 
matches to the data requires bounds on some of the fitting 
parameters to reduce the chance for problematic solutions to be 
selected. 

        

 
Figure 10: Comparison between Debye model fitting to 
permittivity/permeability data and fitting to reflection data.  

 

V. CONCLUSION 
This paper presented two methods for determining 

permittivity and permeability of metal backed samples. Both 
methods have advantages and disadvantages, and neither should 
replace traditional transmission/reflection measurements 
whenever such measurement are possible. With this caveat, the 
materials parameters extracted by these methods show 
agreement with measurements based on conventionally inverted 
transmission/reflection data.  

The Debye model method does well if the bandwidth of data 
encompasses a wide enough range of the material behavior. In 
addition, including bounds on the fitted parameters minimizes 
the problem of multiple solutions and improve reproducibility of 
inversions. In cases where the material under test cannot be 
assumed to be Debye-like, the two-thickness method provides a 
better match the materials properties, at the cost of requiring an 
additional sample to be fabricated. 
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